Bis(bidentate) Complexes of Iminobis(diphenylphosphine chalcogenides) [$\left.\mathrm{M}\left\{\mathrm{N}\left(\mathrm{XPPh}_{2}\right)_{2}-X, X^{\prime}\right\}_{2}\right](X=S$ or $\mathrm{Se} ; \mathbf{M}=\mathbf{N i}$, Pd or $\mathbf{P t}$) \dagger

Pravat Bhattacharyya, ${ }^{\text {a }}$ Josef Novosad, ${ }^{\text {b }}$ Julian Phillips, ${ }^{a}$ Alexandra M. Z. Slawin, ${ }^{\text {c }}$ David J. Williams ${ }^{\text {a }}$ and J. Derek Woollins ${ }^{*, c}$
${ }^{\text {a }}$ Department of Chemistry, Imperial College, South Kensington, London SW7 2AY, UK
${ }^{\text {b }}$ Department of Inorganic Chemistry, Faculty of Science, Masaryk University, Kotlarskaz, 61137 Brno, Czech Republic
${ }^{c}$ Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK

The compound $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ has been synthesised from $\mathrm{NH}\left(\mathrm{PPh}_{2}\right)_{2}$ and selenium in refluxing toluene. A range of complexes $\left[\mathrm{M}\left\{\mathrm{N}\left(\mathrm{XPPh}_{2}\right)_{2}-X, X^{\prime}\right\}_{2}\right](X=S e, M=P t 1$ or $\operatorname{Pd} 2 ; X=S, M=P t 3$, Pd 4 or Ni 5) of the monoanions derived from $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ and its sulfur analogue have been prepared. The new compounds have been characterised by microanalysis, NMR and IR spectroscopy. The crystal structures of $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}, 1,2$ and 5 were determined. The neutral $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ crystallised as H -bonded dimer pairs with a noticeable difference in the hydrogen bonded and nonhydrogen bonded $\mathrm{P}=\mathrm{Se}$ bond lengths. The $\mathrm{P}=\mathrm{Se}$ groups are approximately anti. On complexation the anionic ligands are bidentate and in all cases the resulting $\mathrm{MX}_{2} \mathrm{P}_{2} \mathrm{~N}$ rings are distinctly puckered.

There is considerable interest in the co-ordination of metals by monoanionic, bidentate ligands. For example, acetylacetone and its derivatives form a large class of complexes which have been extensively studied. ${ }^{1}$ The iminobis(diphenylphosphine chalcogenide) ligands I and II may be considered to be main group analogues of acetylacetone. They are readily prepared and offer the opportunity to vary both the donor atoms and the R group more easily than is the case for acetylacetone, and so should be amenable to fine-tuning for specific metal complexation. A number of complexes of the sulfide ligand I ${ }^{2 a}$ and its oxide analogue ${ }^{2 b}$ have been described. In contrast, the selenide compound II has been less well studied, with only a handful of rhenium(v)-oxo, -nitrido and -imido complexes having been reported. ${ }^{3.4}$ One reason that compound II may not have been studied is the report ${ }^{5}$ that it cannot be prepared by the simple oxidative-addition reaction of selenium with $\mathrm{NH}\left(\mathrm{PPh}_{2}\right)_{2}$. Contrary to this we have found that $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ is readily prepared by this route. Furthermore we describe the preparation of a range of iminobis(diphenylphosphine chalcogenide) complexes of nickel, palladium and platinum. The new compounds have been characterised by microanalysis, multielement NMR, IR and positive ion FAB mass spectroscopy. The crystal structures of II and of representative complexes are also reported. The molecular structure of $\left[\mathrm{Pt}\left\{\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}-\mathrm{Se} e, S e^{\prime}\right\}_{2}\right] \cdot \mathrm{CHCl}_{3}$ described here is, we believe, the first example and structural characterisation of a homoleptic $\mathrm{Se}, \mathrm{Se} e^{\prime}$ complex containing the $\left[\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}\right]^{-}$ ligand.

Experimental

Hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were drigd and distilled under nitrogen before use, all other solvents and reagents were used as received. The compounds $\mathrm{NH}\left(\mathrm{PPh}_{2}\right)_{2}, \mathrm{NH}\left(\mathrm{SPPh}_{2}\right)_{2}$ and $\mathrm{Na}\left[\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}\right]$ were prepared by literature methods. ${ }^{5,6}$ The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ (109.4 $\mathrm{MHz})$ and ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}(57.9 \mathrm{MHz})$ NMR spectra were recorded

[^0]

Acetylacetone

X
1 S
II Se
in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ on a JEOL JNM EX270 spectrometer, infrared spectra (as KBr discs) on a Perkin-Elmer 1720X FTIR spectrometer. Microanalyses were performed by the Imperial College Microanalytical Service, positive ion FAB^{+}mass spectra (3-nitrobenzyl alcohol matrix) were recorded on a Vacuum Generators Autospec Q instrument.

Syntheses.-NH $\left(\mathrm{SePPh}_{2}\right)_{2}$ II. The compound $\mathrm{NH}\left(\mathrm{PPh}_{2}\right)_{2}$ ($7.70 \mathrm{~g}, 20 \mathrm{mmol}$) and grey selenium ($3.16 \mathrm{~g}, 40 \mathrm{mmol}$) were heated to reflux in sodium dried toluene ($150 \mathrm{~cm}^{3}$) under nitrogen for 4 h . After cooling the solution the white precipitate was filtered off, washed with toluene ($3 \times 15 \mathrm{~cm}^{3}$) and diethyl ether ($3 \times 15 \mathrm{~cm}^{3}$) and dried in vacuo. Yield: $9.1 \mathrm{~g}, 84 \%$ (Found: C, 52.75; H, 3.70; N, 2.50. Calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NP}_{2} \mathrm{Se}_{2}$: C, 53.05; H, 3.90; N, 2.60\%). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 53.0\left[{ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{77} \mathrm{Se}\right) 793\right.$ Hz .
$\left[\mathrm{Pt}\left\{\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right]$ 1. The compounds $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ (cod = cycloocta-1,5-diene) ($31 \mathrm{mg}, 0.083 \mathrm{mmol}$) and NH$\left(\mathrm{SePPh}_{2}\right)_{2}(91 \mathrm{mg}, 0.167 \mathrm{mmol})$ were dissolved in dichloromethane ($5 \mathrm{~cm}^{3}$) under nitrogen to give an intense yellow solution. After 5 min hexane ($10 \mathrm{~cm}^{3}$) was added and the solution cooled to $0^{\circ} \mathrm{C}$ to give 1 as orange-brown crystals. Yield $103 \mathrm{mg}, 97 \%$ (Found: C, 44.65; H, 3.05; N, 2.10. Calc. for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{P}_{4}-$ $\mathrm{PtSe}_{4}: \mathrm{C}, 45.05: \mathrm{H}, 3.15: \mathrm{N}, 2.20 \%$). NMR: ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 21.0\left[{ }^{2} J\left({ }^{31} \mathrm{P}-195 \mathrm{Pt}\right) 105,{ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{77} \mathrm{Se}\right) 539 \mathrm{~Hz}\right]$; ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta-4242$.
$\left[\mathrm{Pd}\left\{\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}-\mathrm{Se}, \mathrm{Se}\right\}_{2}\right]$ 2. The compounds $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right]$ ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$), $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}(200 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{KOBu}^{1}(41 \mathrm{mg}, 0.37 \mathrm{mmol})$ were stirred together in acetone (5 cm^{3}) for 16 h . The solvent was removed in vacuo and the
product extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Addition of hexane to this solution gave 2 as red crystals. Yield $145 \mathrm{mg}, 73 \%$ (Found: C, 48.05; $\mathrm{H}, 3.05 ; \mathrm{N}, 2.20$. Calc. for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{PdSe}_{4}$: C, 48.40; H, 3.40; N, 2.35\%). ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 26.3$ [${ }^{1}\left({ }^{31} \mathrm{P}-{ }^{7} \mathrm{Se}\right) 543$ Hz .
$\left[\mathrm{Pt}\left\{\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}-S, S^{\prime \prime}\right\}_{2}\right]$ 3. The compounds $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ (100 $\mathrm{mg}, 0.27 \mathrm{mmol})$ and $\mathrm{Na}\left[\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}\right](252 \mathrm{mg}, 0.54 \mathrm{mmol})$ were stirred in chloroform ($10 \mathrm{~cm}^{3}$) for 16 h . The product precipitated as a bright yellow solid and was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CCl}_{4}$. Yield $225 \mathrm{mg}, 77 \%$ (Found: $\mathrm{C}, 51.65 ; \mathrm{H}, 3.15, \mathrm{~N}$, 2.40. Calc. for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{PtS}_{4}$: C, $\left.52.80 ; \mathrm{H}, 3.70 ; \mathrm{N}, 2.55 \%\right)$. ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 34.4$ [s, ${ }^{2} J\left({ }^{31} \mathrm{P} _{ }^{19}{ }^{5} \mathrm{Pt}\right) 95.4 \mathrm{~Hz}$].
$\left[\operatorname{Pd}\left\{\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}-S, S^{\prime}\right\}_{2}\right]$. The compounds $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right]$ (50 $\mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathrm{Na}\left[\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}\right](174 \mathrm{mg}, 0.37 \mathrm{mmol})$ were stirred in acetone ($5 \mathrm{~cm}^{3}$) for 16 h . The solvent was removed in vacuo and the product extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Addition of hexane to this solution gave 4 as orange crystals. Yield 110 mg , 72% (Found: C, $57.00 ; \mathrm{H}, 3.80$; N 2.20. Calc. for $\left.\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{PdS}_{4}: \mathrm{C}, 57.45 ; \mathrm{H}, 4.00 ; \mathrm{N}, 2.80 \%\right) .{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR: δ 37.9.
$\left[\mathrm{Ni}\left\{\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}-S, S^{\prime}\right\}_{2}\right]$ 5. The compounds $2 \mathrm{NiCO}_{3}$. $3 \mathrm{Ni}(\mathrm{OH})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad(13 \mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{NH}\left(\mathrm{SPPh}_{2}\right)_{2}$ ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) were stirred in methanol $\left(5 \mathrm{~cm}^{3}\right.$) for 72 h . The product formed as a brown precipitate which dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a green solution. Addition of $\mathrm{Et}_{2} \mathrm{O}$ to this solution and cooling yielded brown crystals of 5 . Yield 130 mg , 62% (Found: C, $59.20 ; \mathrm{H}, 3.65$; N, 2.90. Calc. for $\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NiP}_{4} \mathrm{~S}_{4}: \mathrm{C}, 60.30 ; \mathrm{H}, 4.20 ; \mathrm{N}, 2.95 \%$).
X-Ray Crystallography.-Crystals suitable for X-ray analysis were obtained by slow diffusion of hexane into chloroform solutions of the appropriate compound. Complexes 1 and 2 were obtained as chloroform solvates. Details of the data collections and refinements are summarised in Table 1. All four structures were solved by direct methods and refined by fullmatrix least-squares methods using anisotropic thermal parameters for the non-hydrogen atoms. In complexes 1,2 and

5 the phenyl rings were refined as rigid bodies. In II the position of the $\mathrm{N}-\mathrm{H}$ proton was determined from a ΔF map and refined isotropically subject to a refined $\mathrm{N}-\mathrm{H}$ distance constraint. The positions of the remaining hydrogen atoms in compound II and those in 1,2 and 5 were idealised, assigned isotropic thermal parameters $U(\mathrm{H})=1.8 U_{\mathrm{eq}}(\mathrm{C})$ and allowed to ride on their parent carbon atoms. In 1 and 2 the included solvent molecules were estimated to have occupancies of 0.5 . In 2 the somewhat high final R value is a consequence of disorder in the included CHCl_{3} solvent; this disorder could not be resolved into partial occupancy orientations. In all four structures absorption corrections (face indexed numerical corrections) were applied. Computations were performed using the SHELXTL PC system. ${ }^{7}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

Although a number of complexes of $\left[\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}\right]^{-}$have been described, ${ }^{2}$ in contrast few selenium analogues are known. Wang et al. ${ }^{5}$ have previously synthesised $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ II from the reaction between $\mathrm{NH}\left(\mathrm{PPh}_{2}\right)_{2}$ and KSeCN in 60% yield following acidic work-up. We have found that it can be more conveniently prepared in better yield by the direct reaction of 2 equivalents of grey selenium with $\mathrm{NH}\left(\mathrm{PPh}_{2}\right)_{2}$ in refluxing toluene [equation (1)].

$$
\begin{equation*}
\mathrm{NH}\left(\mathrm{PPh}_{2}\right)_{2}+2 \mathrm{Se} \longrightarrow \mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NHP}(\mathrm{Se}) \mathrm{Ph}_{2} \tag{1}
\end{equation*}
$$

We have studied the reactions of compounds I and II and their salts with Group 10 metal salts. The reaction of $\mathrm{Na}\left[\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}\right]$ with $\left[\mathrm{PtCl}_{2}(\right.$ cod $\left.)\right]$ or $\mathrm{Na}_{2}\left[\mathrm{PdCl}_{4}\right]$ gives the complexes $\left[\mathrm{M}\left\{\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}-S, S^{\prime}\right\}_{2}\right](\mathrm{M}=\mathrm{Pt} 3$ or Pd 4$)$. The nickel analogue 5 was obtained directly from the reaction of nickel carbonate with $\mathrm{NH}\left(\mathrm{SPPh}_{2}\right)_{2}$ [equation (2)].

Table 1 Details of the crystal data collection and refinements

Compound	II	1. CHCl_{3}	2. CHCl_{3}	5
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NP}_{2} \mathrm{Se}_{2}$	$\mathrm{C}_{49} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{PtSe}_{4}$	$\mathrm{C}_{49} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{PdSe}_{4}$	$\mathrm{C}_{48} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NiP}_{4} \mathrm{~S}_{4}$
Colour, habit	Clear, plate	Orange-brown prism	Yellow-orange, needle	Pale brown prism
M	543.3	1399.0	1310.3	955.7
Crystal size/mm	$0.20 \times 0.40 \times 0.40$	$0.11 \times 0.16 \times 0.17$	$0.20 \times 0.26 \times 0.50$	$0.10 \times 0.16 \times 0.20$
Diffractometer/radiation	Siemens P4, Mo-K α	Siemens P4, Mo-K α	Siemens P4, Mo-K ${ }_{\text {a }}$	Siemens P4, Cu-K
a / \AA	10.787(4)	9.558(3)	9.512(6)	13.353(2)
b / \AA	10.951(3)	12.331(4)	12.333(9)	18.568(4)
c / \AA	11.297(4)	13.040(5)	13.079(8)	18.651(4)
$\alpha /{ }^{\circ}$	63.81(2)	110.94(3)	110.79(5)	90.11(2)
$\beta /{ }^{\circ}$	75.23(2)	96.45(3)	96.45(5)	93.00(2)
$\gamma{ }^{\circ}$	80.77(2)	100.07(3)	100.07(5)	98.29(2)
U / \AA^{3}	1156	1388	1387	4569
Z	2	1^{a}	1^{a}	$4{ }^{\text {b }}$
$D / \mathrm{Mg} \mathrm{m}^{-3}$	1.561	1.674	1.569	1.389
μ / mm^{-1}	3.35	5.44	3.25	3.93
$F(000)$	540	674	642	1976
2θ Range $/^{\circ}$	4.0-50.0	3.0-50.0	3.0-55.0	0.0-116.0
Min./max. transmission	0.347/0.555	0.432/0.588	0.434/0.557	0.567/0.693
Independent reflections	4054	6363	4884	12706
Observed reflections	$3234[F>3 \sigma(F)]$	$3476[F>4 \sigma(F)]$	$3418[F>4 \sigma(F)]$	9992[F>30(F)]
Weighting scheme	$\sigma^{2}(F)+0.0007 F^{2}$	$\sigma^{2}(F)+0.0007 F^{2}$	$\sigma^{2}(F)+0.0005 F^{2}$	$\sigma^{2}(F)+0.0005 F^{2}$
No. of parameters refined	266	304	259	872
$\boldsymbol{R}, R^{\prime}$ (\%)	4.08, 3.99	5.70, 5.59	7.31, 7.21	5.20, 5.66
Maximum, mean Δ / σ ratio	0.034, 0.003	2.834, 0.283	0.137, 0.009	0.076, 0.015
Data/parameter ratio	12.2	11.2	13.4	11.5
Largest difference peak and hole/e \AA^{-3}	0.70, -0.55	1.27, -1.08	1.26, -0.87	0.39, -0.41

$$
\begin{align*}
& 2 \mathrm{NH}\left(\mathrm{SPPh}_{2}\right)_{2}+\mathrm{NiCO}_{3} \longrightarrow \\
& {\left[\mathrm{Ni}\left\{\mathrm{~N}\left(\mathrm{SPPh}_{2}\right)_{2}-S, S^{\prime}\right\}_{2}\right]+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} } \tag{2}
\end{align*}
$$

The selenium system behaves in a similar fashion to the sulfur compound for reactions with palladium, but for platinum no conversion of $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ to $\left[\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}\right]$ is necessary. The complex $\left[\mathrm{PtCl}_{2}(\mathrm{cod})\right]$ reacts directly with $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ to give $\left[\mathrm{Pt}\left\{\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right]$ 1. The complex $\left[\mathrm{Ni}\left\{\mathrm{N}\left(\mathrm{SePPh}_{2}\right)-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right]$ could not be prepared from either [$\left.\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}\right]^{-}$with NiCl_{2} or from $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ with the corresponding carbonate. With the exception of the platinum complex 1 all of these compounds appear to be air stable. Solutions of 1 are susceptible to aerial oxidation, freshly prepared solutions turning from yellow to red within 24 h . However no decomposition of the co-ordinated ligand, as seen for $\left[\operatorname{Re}(\mathrm{O}) \mathrm{Cl}\left\{\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right],{ }^{2}$ is observed.

The ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of II and $1-4$ are straightforward. For compound II the spectrum consists of a singlet of $\mathbf{9 2 \%}$ intensity together with an $\mathrm{AA}^{\prime} \mathrm{X}$ spectrum of 8% intensity associated with the $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NHP}\left({ }^{77} \mathrm{Se}\right) \mathrm{Ph}_{2}$ isotopomer (Fig. 1). In the complexes $1-4$ the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are singlets with, in the case of the platinum-containing systems ${ }^{2} J\left({ }^{31} \mathrm{P}_{-}{ }^{195} \mathrm{Pt}\right.$) satellites (105 and 95 Hz for 1 and 3 respectively). The spectra of 1 and 2 can only be satisfactorily interpreted if it is assumed that the ${ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}$ coupling constant is approximately zero. The ${ }^{1} J\left({ }^{31} \mathrm{P}^{-77} \mathrm{Se}\right)$ couplings in 1 and 2 are lower in magnitude than in the free ligand II suggesting a reduction in the P -Se bond order. In the IR spectra (Table 2), $v\left(\mathrm{P}_{2} \mathrm{~N}\right)$ bands for $\left[\mathrm{Pt}\left\{\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right]$ appear at 1157 s and $805 \mathrm{~s} \mathrm{~cm}^{-1}$ and the $v(\mathrm{PSe})$ band appears at $536 \mathrm{~m} \mathrm{~cm}^{-1}$ reflecting the increased $\mathrm{P}-\mathrm{N}$ bond order and decreased $\mathrm{P}=\mathrm{Se}$ character in the deprotonated molecule compared to neutral $\mathrm{NH}\left(\mathrm{SePPh}_{2}\right)_{2}$ [$v\left(\mathrm{P}_{2} \mathrm{~N}\right)$ at $937,926,918 ; v(\mathrm{PSe})$ at $\left.595,546 \mathrm{~cm}^{-1}\right]$. The most prominent features of the positive ion FAB^{+}mass spectra of II and $1-5$ are due to the molecular ions $\left[\mathrm{M}\left\{\mathrm{N}\left(\mathrm{XPPh}_{2}\right)_{2}\right\}_{2}\right]^{+}$and $\left[\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}\right]^{+}$which reveal the expected, characteristic, isotopic distribution patterns.

Fig. 1 The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound II expanded to illustrate details of the AA^{\prime} portion of the $\mathrm{AA}^{\prime} \mathrm{X}$ spectrum of the ${ }^{7} \mathrm{Se}$ containing isotopomer

Table 2 Selected IR data $\left(\mathrm{cm}^{-1}\right)$ for the compounds I, II and 1-5

Compound	$v\left(P_{2} \mathrm{~N}\right)$	$v(P=X)$
I	$935 \mathrm{~m}, 922 \mathrm{~s}, 919 \mathrm{vs}$	$645 \mathrm{~s}, 622 \mathrm{w}$
II	$937 \mathrm{~m}, 926 \mathrm{~s}, 918 \mathrm{~s}$	$595 \mathrm{~m}, 546 \mathrm{~m}$
$\mathbf{1}$	$1157 \mathrm{~m}, 805 \mathrm{~s}$	536 m
$\mathbf{2}$	$1172 \mathrm{~m}, 800 \mathrm{~s}$	537 vs
$\mathbf{3}$	$1220 \mathrm{~m}, 1146 \mathrm{~m}, 826 \mathrm{~s}, 804 \mathrm{~m}$	565 vs
$\mathbf{4}$	$1160 \mathrm{~m}, 822 \mathrm{~s}$	565 vs
$\mathbf{5}$	$1207 \mathrm{~m}, 1174 \mathrm{~m}, 804 \mathrm{~s}$	565 vs

The crystal structure of compound II (Fig. 2, Tables 3 and 4) shows the compound to be isomorphous with its sulfur analogue. ${ }^{8}$ The $P=S e$ bond lengths $[2.085(1)$ to $P(2)$ and 2.101(1) \AA to $P(1)]$ are normal ${ }^{9}$ and as expected longer than the analogous $\mathrm{P}=\mathrm{S}$ distances in the sulfur compound [1.937(1) and 1.950 (1) \AA]. The P-N distances in II are 1.678(4) and $1.686(3) \AA$ to $P(1)$ and $P(2)$ respectively whilst the $P-N-P$ angle is noticeably enlarged at $132.3(2)^{\circ}$ indicating a substantial amount of sp^{2} character at the nitrogen. This is also reflected by the very small degree of pyramidalisation at the nitrogen centre; the nitrogen atom lies only $0.15 \AA$ out of the plane of its substituents. The SePNPSe chain can, in principle, adopt a number of conformations, the geometry about the $\mathrm{N}-\mathrm{P}(2)$ bond is gauche $\left[\mathrm{P}(1)-\mathrm{N}-\mathrm{P}(2)-\mathrm{Se}(2)\right.$ torsion angle $\left.63^{\circ}\right]$ and there is a further 111° torsional rotation in the same sense, about the N-P(1) bond. The cumulative effect is an approximately anti disposition of the two selenium atoms relative to each other with the $\operatorname{Se}(1)-\mathrm{P}(1) \cdots P(2)-\operatorname{Se}(2)$ 'torsion angle' being 154°. The molecules in II are linked by N-H ... Se hydrogen bonds to form dimer pairs positioned about a crystallographic centre of symmetry. The $\mathrm{N}-\mathrm{H}, \mathrm{Se} \cdots \mathrm{H}$ and $\mathrm{N} \cdots$ Se distances are $0.94,2.52$ and $3.19 \AA$ respectively and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Ce}(1 \mathrm{a})$ angle

(b)

Fig. 2 The crystal structure of compound II showing (a) a single molecule with the numbering scheme and (b) a hydrogen-bonded dimer pair

Table 3 Atomic coordinates ($\times 10^{4}$) for compound II, with estimated standard deviations (e.s.d.s) in parentheses

Fig. 3 The crystal structure of 2 ; the platinum analogue 1 is isomorphous
is 166°. There are no interactions involving the other selenium atom. It is interesting that the $\mathrm{P}=\mathrm{Se}$ bond lengths differ significantly with the H -bonded selenium, $\mathrm{Se}(1)$ having a longer $\mathrm{P}=\mathrm{Se}$ bond length than $\mathrm{Se}(2)$ as a consequence of the hydrogen bond to $\mathrm{Se}(1)$.

Upon deprotonation and co-ordination compound II acts as a bidentate ligand in complexes 1-5. The crystal structures of 1 and 2 (both of which crystallise as chloroform solvates, Fig. 3, Tables 5-7) are isomorphous* and reveal a square-planar geometry for the metal centre which is positioned upon a

[^1]Table 4 Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for II

$\mathrm{Se}(1)-\mathrm{P}(1)$	$2.101(1)$	$\mathrm{P}(1)-\mathrm{N}$	$1.678(4)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.811(4)$	$\mathrm{P}(1)-\mathrm{C}(7)$	$1.809(5)$
$\mathrm{Se}(2)-\mathrm{P}(2)$	$2.085(1)$	$\mathrm{P}(2)-\mathrm{N}$	$1.686(3)$
$\mathrm{P}(2)-\mathrm{C}(13)$	$1.804(5)$	$\mathrm{P}(2)-\mathrm{C}(19)$	$1.809(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.384(8)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.389(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.379(6)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.371(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.378(10)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.378(7)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.380(5)$	$\mathrm{C}(7)-\mathrm{C}(12)$	$1.382(6)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.388(8)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.377(8)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.380(6)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.379(7)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.389(6)$	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.390(6)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.386(8)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.367(9)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.370(8)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.369(8)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.370(5)$	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.391(7)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.390(9)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.355(10)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.376(7)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.371(9)$
$\mathrm{Se}(1)-\mathrm{P}(1)-\mathrm{N}$	$114.5(1)$	$\mathrm{Se}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	$112.1(1)$
$\mathrm{N}-\mathrm{P}(1)-\mathrm{C}(1)$	$103.9(2)$	$\mathrm{Se}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$111.4(2)$
$\mathrm{N}-\mathrm{P}(1)-\mathrm{C}(7)$	$106.3(2)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$108.1(2)$
$\mathrm{Se}(2)-\mathrm{P}(2)-\mathrm{N}$	$116.1(1)$	$\mathrm{Se}(2)-\mathrm{P}(2)-\mathrm{C}(13)$	$113.8(1)$
$\mathrm{N}-\mathrm{P}(2)-\mathrm{C}(13)$	$105.5(2)$	$\mathrm{Se}(2)-\mathrm{P}(2)-\mathrm{C}(19)$	$113.1(1)$
$\mathrm{N}-\mathrm{P}(2)-\mathrm{C}(19)$	$99.5(2)$	$\mathrm{C}(13)-\mathrm{P}(2)-\mathrm{C}(19)$	$107.6(2)$
$\mathrm{P}(1)-\mathrm{N}-\mathrm{P}(2)$	$132.3(2)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.3(3)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$120.1(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$118.7(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.5(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120.3(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.0(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119.8(5)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.7(5)$	$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$121.6(4)$
$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	$118.3(3)$	$\mathrm{C}(8)-\mathrm{C}(79-\mathrm{C}(12)$	$120.1(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.6(5)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.3(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.8(5)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.2(5)$
$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	$120.0(4)$	$\mathrm{P}(2)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.6(3)$
$\mathrm{P}(2)-\mathrm{C}(13)-\mathrm{C}(18)$	$120.0(3)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$119.3(4)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$119.3(5)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.6(5)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.1(6)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.4(5)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$120.3(4)$	$\mathrm{P}(2)-\mathrm{C}(19)-\mathrm{C}(20)$	$123.1(4)$
$\mathrm{P}(2)-\mathrm{C}(19)-\mathrm{C}(24)$	$117.5(3)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	$119.4(5)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.8(5)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$120.2(4)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$120.5(6)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$119.9(6)$
$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	$120.1(4)$		

crystallographic centre of symmetry. The $\mathrm{MSe}_{2} \mathrm{P}_{2} \mathrm{~N}$ rings adopt a folded geometry with $\mathrm{P}(1)$ lying essentially within the coordination plane $[\mathrm{Pt}-\mathrm{Se}(1)-\mathrm{Se}(2)-\mathrm{P}(1)$ coplanar to within $0.04 \AA]$ and with the $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{Se}(2)$ plane (coplanar to within $0.13 \AA$) folded by 58° out of the co-ordination plane. In both 1 and 2 the $\mathrm{M}-\mathrm{Se}(1)$ bond is shorter than the $\mathrm{M}-\mathrm{Se}(2)$ bond by ca. $0.02 \AA$, i.e. 10σ. There is also a large difference in the $\mathbf{M}-\mathrm{Se}(1)-\mathrm{P}(1)$ and $\mathrm{M}-\mathrm{Se}(2)-\mathrm{P}(2)$ angles [in 1, 2 the angles are $108.0(1), 108.3(1)$ and $100.8(1), 100.6(1)^{\circ}$ respectively]. Clearly, there is substantially increased bonding between the metal centre and $\mathrm{Se}(1)$ in both structures and the bonding is consistent with a pronounced influence of one of the valence canonical forms i.e. with some localisation of the bonding. In comparison with the geometry of the free ligand II, the P-Se distances in 1 and $\mathbf{2}$ are, as expected, substantially increased whilst the $\mathrm{P}-\mathrm{N}$ bond lengths are shortened. The angle at nitrogen is contracted in 1 and 2 as a consequence of the co-ordination of the two selenium atoms. There is only a marginal increase in the $\mathrm{Se}-\mathrm{P}-\mathrm{N}$ angles upon co-ordination.

There is noticeable distortion in the co-ordination geometry at $\operatorname{Pt}(\mathrm{Pd})$ with the ligand bite angles being $99.5(99.3)^{\circ}$ and the remaining angles being 80.5 (80.7) ${ }^{\circ}$. As a consequence of the contraction of the $\mathrm{Se}(1)-\mathrm{M}-\mathrm{Se}(2)$ angle there is a short intramolecular $\mathrm{Se}(1) \cdots \mathrm{Se}(2 \mathrm{a})$ contact of $3.15 \AA$ [cf. $\mathrm{Se}(1) \cdots \mathrm{Se}(2) 3.72 \AA]$. There are no significant intermolecular contacts between the metallacyclic components of the structures.

The crystal structure of complex 5 (Fig. 4, Tables 8 and 9) contains two crystallographically independent molecules which

Fig. 4 The crystal structure of 5 showing (a) a ball and stick representation of one of the crystallographically independent molecules and (b) a line drawing with the numbering scheme in the second molecule

Table 5 Atomic coordinates ($\times 10^{4}$) for complex 2, with e.s.d.s in parentheses

Atom	x	y	z
Pd	5000	5000	5000
$\mathrm{Se}(1)$	$6161(2)$	$7111(1)$	5 668(1)
$\mathrm{P}(1)$	6 719(3)	$7804(3)$	7 488(2)
C(1)	3 920(9)	8 195(9)	$7498(6)$
C(2)	2758	8466	8025
C(3)	2833	8612	9138
C(4)	4070	8485	9725
C(5)	5233	8213	9199
C(6)	5158	8068	8085
C(7)	9 206(12)	9 513(12)	8 532(10)
C(8)	10117	10638	8833
C(9)	9657	11476	8469
C(10)	8287	11189	7804
C(11)	7376	10064	7503
C(12)	7836	9226	7867
$\mathrm{N}(1)$	7 563(9)	7 128(9)	$8058(7)$
$\mathrm{P}(2)$	7 160(3)	5 690(3)	7 662(2)
$\mathrm{Se}(2)$	$4931(1)$	4799 (1)	$6798(1)$
C(13)	$8088(8)$	3 878(8)	$6162(8)$
C(14)	9142	3388	5616
C(15)	10535	4091	5798
C(16)	10874	5284	6526
C(17)	9821	5774	7071
C(18)	8427	5071	6890
C(19)	$6885(18)$	6 025(9)	$9822(10)$
C(20)	6912	5710	10748
C(21)	7420	4712	10738
C(22)	7900	4029	9802
C(23)	7873	4343	8876
C(24)	7365	5341	8886
C(30)	$2837(84)$	$1066(43)$	6 032(44)
$\mathrm{Cl}(1)$	4 181(16)	1 604(13)	$7454(12)$
$\mathrm{Cl}(2)$	1 660(13)	1441 (20)	6 206(14)
$\mathrm{Cl}(3)$	3 386(27)	-140(16)	5420 (11)

Table 6 Atomic coordinates ($\times 10^{4}$) for complex 1, with e.s.d.s in parentheses

Atom	x	y	z
Pt	0	0	0
$\mathrm{Se}(1)$	-1155(2)	-2105(1)	-662(1)
$\mathbf{P}(1)$	-1722(3)	-2794(3)	-2484(2)
C(1)	1081(9)	-3175(9)	-2494(6)
C(2)	2240	-3458	-3016
C(3)	2174	-3616	-4136
C(4)	949	-3492	-4734
C(5)	-210	-3210	-4213
C(6)	-144	-3051	-3093
C(7)	-4245(10)	-4528(11)	-3533(10)
C(8)	-5153	-5652	-3823
C(9)	-4683	-6490	-3467
C(10)	-3305	-6206	-2820
C(11)	-2398	-5082	-2530
C(12)	-2868	-4244	-2886
N(1)	-2578(9)	-2090(9)	-3052(8)
P (2)	-2175(3)	-684(3)	-2664(2)
$\mathrm{Se}(2)$	61(1)	197(1)	-1796(1)
C(13)	-3106(8)	1150(8)	-1154(8)
C(14)	-4145	1647	-597
C(15)	-5530	946	-764
C(16)	-5875	-252	-1489
C(17)	-4835	-749	-2046
C(18)	-3451	-48	-1879
C(19)	-1525(19)	-784(16)	-4687(12)
C(20)	-1655(26)	-567(24)	- 5672(14)
C(21)	- 2543(22)	177(18)	-5814(11)
C(22)	-3503(26)	512(30)	-5088(19)
C(23)	-3491(23)	164(28)	-4175(18)
C(24)	-2401(11)	-367(10)	-3915(7)
C(19')	-2847(37)	656(18)	-3899(12)
C(20)	-2862(35)	956(22)	-4838(16)
C(22')	-2321(41)	-933(17)	-5879(10)
C(23')	-2188(30)	-1186(11)	-4914(10)
C(30)	1934(68)	3846(43)	8827(44)
$\mathrm{Cl}(1)$	3327(12)	3520(19)	8789(14)
$\mathrm{Cl}(2)$	847(15)	3429(13)	7537(12)
$\mathrm{Cl}(3)$	1538(26)	5183(17)	9552(11)

Primes denote disordered components.

Table 7 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complexes I and 2

	$\mathbf{M}=\mathrm{Pt} \mathbf{1}$	$\mathbf{M}=\mathrm{Pd} \mathbf{2}$
$\mathrm{M}-\mathrm{Se}(1)$	$2.425(2)$	$2.434(2)$
$\mathrm{M}-\mathrm{Se}(2)$	$2.445(2)$	$2.457(2)$
$\mathrm{P}(1)-\mathrm{Se}(1)$	$2.183(3)$	$2.189(3)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.596(13)$	$1.561(12)$
$\mathrm{P}(2)-\mathrm{N}(1)$	$1.583(11)$	$1.621(11)$
$\mathrm{P}(2)-\mathrm{Se}(2)$	$2.191(3)$	$2.178(3)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.806(9)$	$1.780(10)$
$\mathrm{P}(1)-\mathrm{C}(12)$	$1.784(12)$	$1.750(13)$
$\mathrm{P}(2)-\mathrm{C}(18)$	$1.786(9)$	$1.762(9)$
$\mathrm{P}(2)-\mathrm{C}(24)$	$1.807(12)$	$1.799(14)$
$\mathrm{Se}(1)-\mathrm{M}-\mathrm{Se}(2)$	$99.5(1)$	$99.3(1)$
$\mathrm{Se}(1)-\mathrm{M}-\mathrm{Se}(2 \mathrm{a})$	$80.5(1)$	$80.7(1)$
$\mathrm{M}-\mathrm{Se}(1)-\mathrm{P}(1)$	$108.0(1)$	$108.3(1)$
$\mathrm{Se}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$118.7(4)$	$119.1(4)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	$123.3(5)$	$122.9(5)$
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{Se}(2)$	$115.4(4)$	$115.7(4)$
$\mathrm{P}(2)-\mathrm{Se}(2)-\mathrm{M}$	$100.8(1)$	$100.6(1)$

have essentially identical conformations. In both molecules the $\mathrm{NiS}_{4} \mathrm{P}_{4} \mathrm{~N}_{2}$ core has approximate C_{2} symmetry about the $\mathrm{Ni} \cdots \mathrm{N}$ axis with the $\mathrm{NiS}_{2} \mathrm{P}_{2} \mathrm{~N}$ rings adopting puckered conformations within which no four adjacent atoms are coplanar. The puckering of each ring is similar to that observed in 1 and 2 but is more pronounced in 5 . Although the sequence of torsion angles within each metallacyclic ring in 5 follows the

Table 8 Atomic coordinates ($\times 10^{4}$) for complex 5 , with e.s.d.s in parentheses

Atom	\boldsymbol{x}	y	z	Atom	x	y	z
$\mathrm{Ni}(1)$	3823 (1)	198(1)	2 622(1)	$\mathrm{Ni}(2)$	$10937(1)$	-5 128(1)	2377 (1)
S(1)	2 797(1)	-781(1)	$3058(1)$	S(5)	$11961(1)$	-4198(1)	$1855(1)$
P(1)	$1446(1)$	-682(1)	2 557(1)	P(5)	13 299(1)	-4 245(1)	$2398(1)$
N(1)	$1004(3)$	60(2)	2 646(2)	N(5)	13 769(3)	-4983(2)	2369 (2)
C(1)	-466(3)	-1 222(2)	$2988(2)$	C(51)	$15187(2)$	-3724(1)	$1905(2)$
C(2)	-1198	-1754	3252	C(52)	15906	-3199	1618
C(3)	-947	-2435	3438	C(53)	15658	-2 512	1449
C(4)	36	-2 585	3361	C(54)	14691	-2 351	1566
C(5)	768	-2 054	3097	C(55)	13972	-2 877	1853
C(6)	517	-1372	2910	C(56)	14219	-3563	2022
C(7)	2041 (3)	-1 461(2)	$1427(2)$	C(57)	13 659(3)	-4306(2)	3 876(2)
C(8)	2091	-1639	703	C(58)	13550	-4104	4586
C(9)	1608	-1260	176	C(59)	12968	-3 561	4734
$\mathrm{C}(10)$	1076	-703	372	C(60)	12495	-3219	4173
C(11)	1026	-525	1095	C(61)	12604	-3420	3463
C(12)	1509	-904	1622	C(62)	13186	-3964	3315
P (2)	$1551(1)$	878(1)	2603 (1)	P(6)	13 234(1)	- 5 804(1)	2 429(1)
C(13)	$1071(2)$	2 032(2)	$1755(2)$	C(63)	13 691(2)	-6978(2)	3 236(2)
C(14)	395	2458	1436	C(64)	14348	-7373	3622
C(15)	-647	2243	1466	C(65)	15360	-7074	3760
C(16)	-1 013	1602	1814	C(66)	15715	-6381	3511
C(17)	-337	1175	2133	C(67)	15058	-5986	3125
C(18)	705	1391	2103	C(68)	14046	-6285	2987
$\mathrm{C}(19)$	2 159(3)	896(2)	4 036(2)	C(69)	13 558(3)	-6884(2)	1449 (2)
C(20)	2344	1199	4724	C(70)	13473	-7208	768
C(21)	2057	1875	4872	C(71)	13012	-6878	193
C(22)	1585	2247	4333	C(72)	12636	-6225	298
C(23)	1400	1943	3646	C(73)	12721	-5901	978
C(24)	1688	1268	3497	C(74)	13182	-6231	1553
S(2)	$2901(1)$	$1046(1)$	2 143(1)	S(6)	11 855(1)	-5 978(1)	2 848(1)
S(3)	$5011(1)$	654(1)	3 519(1)	S(7)	10 221(1)	-4582(1)	3 289(1)
P(3)	$6155(1)$	86(1)	3 331(1)	P(7)	8 774(1)	-5070(1)	3 197(1)
N(3)	6 583(3)	127(2)	2 554(2)	N(7)	8 180(3)	-5038(2)	2 439(2)
C(25)	5 241(3)	-988(2)	4 213(2)	C(75)	8 185(3)	-6563(2)	$3068(2)$
C(26)	4965	-1705	4431	C(76)	8165	-7283	3283
C(27)	5213	-2 279	4026	C(77)	8715	-7443	3904
C(28)	5737	-2138	3402	C(78)	9285	-6882	4311
C(29)	6013	-1422	3183	C(79)	9304	-6161	4095
C(30)	5765	-847	3589	C(80)	8754	-6001	3474
C(31)	8 187(2)	287(2)	3 738(2)	C(81)	7 167(2)	-4380(2)	3 588(2)
C(32)	9033	487	4204	C(82)	6615	-4040	4068
C(33)	8924	809	4866	C(83)	6955	-3951	4787
C(34)	7968	931	5062	C(84)	7848	-4203	5026
C(35)	7121	730	4596	C(85)	8401	-4 544	4546
C(36)	7231	408	3934	C(86)	8060	-4632	3827
$\mathrm{P}(4)$	$6016(1)$	154(1)	$1783(1)$	P(8)	8 622(1)	-5058(1)	1668 (1)
C(37)	6059(3)	1 277(2)	771(2)	C(87)	9666 (3)	-4031(2)	788(2)
C(38)	6065	2002	572	C(88)	9956	-3 327	542
C(39)	6111	2542	1099	C(89)	9635	-2737	882
C(40)	6150	2358	1823	C(90)	9023	-2852	1467
C(41)	6144	1633	2022	C(91)	8734	-3556	1712
C(42)	6099	1093	1496	C(92)	9055	-4146	1373
C(43)	6 287(2)	-494(2)	472(2)	C(93)	7 673(2)	-5670(2)	389(2)
$\mathrm{C}(44)$	6816	-863	0	C(94)	6833	-5871	-83
$\mathrm{C}(45)$	7751	-1061	222	C(95)	5867	-5782	119
$\mathrm{C}(46)$	8157	-891	917	C(96)	5741	-5491	793
C(47)	7628	-522	1389	C(97)	6581	-5290	1265
C(48)	6693	-324	1166	C(98)	7547	-5 379	1063
S(4)	4 546(1)	-290(1)	$1677(1)$	S(8)	$9728(1)$	- $5672(1)$	1544 (1)

same pattern there are differences in their magnitude of up to 20° for equivalent angles. These differences reflect the stereochemical freedom of the $\mathrm{NiS}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring. The $\mathrm{Ni}-\mathrm{S}$ bond lengths and the $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$ angles are in the ranges 2.284(2)$2.316(2) \AA$ and $104.8(1)-113.8(1)^{\circ}$ respectively. As was the case in $\mathbf{1}$ and 2 the P-S and $\mathbf{P}-\mathrm{N}$ bond lengths are increased and decreased respectively as a consequence of deprotonation and co-ordination. In contrast to 1 and 2 the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angles in 5 are little changed from that seen in I [range in 5 127.6(2)-130.6(3) ${ }^{\circ}$ cf. 132.7(1) ${ }^{\circ}$ in I and $132.3(2)^{\circ}$ in II$]$. It is interesting that despite
the electronic relationship of acetylacetone and II (which although not isoelectronic are closely related), although Group 10 complexes of acetylacetone all contain planar six-membered rings, here the rings are all puckered. The difference between acetylacetone I and II may reflect the ability of the heavier main group ligand to form delocalised rings without any requirement for planarity since in the case of complexes of I and II low-lying d orbitals are available. The ability of main group rings to use d orbitals in pseudo-aromatic systems has been extensively discussed. ${ }^{10}$ A similar effect has recently been noted ${ }^{2}$ for

Table 9 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex 5

$\mathrm{Ni}(1)-\mathrm{S}(1)$	2.291(2)	$\mathrm{Ni}(1)-\mathrm{S}(2)$	2.289(2)	$\mathrm{Ni}(2)-\mathrm{S}(5)$	2.294(2)	$\mathrm{Ni}(2)-\mathrm{S}(6)$	2.284(2)
$\mathrm{Ni}(1)-\mathrm{S}(3)$	2.316 (2)	$\mathrm{Ni}(1)-\mathrm{S}(4)$	2.298(2)	$\mathrm{Ni}(2)-\mathrm{S}(7)$	2.299(2)	$\mathrm{Ni}(2)-\mathrm{S}(8)$	$2.302(2)$
S(1)-P(1)	2.021(2)	$\mathrm{P}(1)-\mathrm{N}(1)$	1.587(4)	S(5)-P(5)	2.020(2)	$\mathrm{P}(5)-\mathrm{N}(5)$	1.589(4)
$\mathrm{P}(1)-\mathrm{C}(6)$	1.801(3)	$\mathrm{P}(1)-\mathrm{C}(12)$	$1.800(5)$	$\mathrm{P}(5)-\mathrm{C}(56)$	1.803(3)	$\mathrm{P}(5)-\mathrm{C}(62)$	$1.807(4)$
$\mathrm{N}(1)-\mathrm{P}(2)$	1.591(4)	$\mathrm{P}(2)-\mathrm{C}(18)$	1.804(4)	$\mathrm{N}(5)-\mathrm{P}(6)$	1.594(4)	$\mathrm{P}(6)-\mathrm{C}(68)$	1.796(3)
$\mathrm{P}(2)-\mathrm{C}(24)$	1.807(4)	$\mathbf{P}(2)-\mathbf{S}(2)$	2.021(2)	$\mathrm{P}(6)-\mathrm{C}(74)$	1.807(3)	$\mathbf{P}(6)-\mathbf{S}(6)$	2.021(2)
S(3)-P(3)	2.023(2)	$\mathrm{P}(3)-\mathrm{N}(3)$	1.583(4)	$\mathbf{S}(7)-\mathbf{P}(7)$	2.010(2)	$\mathbf{P}(7)-\mathrm{N}(7)$	1.590(4)
$\mathrm{P}(3)-\mathrm{C}(30)$	1.809(3)	$\mathrm{P}(3)-\mathrm{C}(36)$	1.808(3)	$\mathrm{P}(7)-\mathrm{C}(80)$	1.804(4)	$\mathrm{P}(7)-\mathrm{C}(86)$	1.814(4)
$\mathrm{N}(3)-\mathrm{P}(4)$	1.594(4)	$\mathrm{P}(4)-\mathrm{C}(42)$	$1.815(4)$	$\mathrm{N}(7)-\mathrm{P}(8)$	1.586(4)	$P(8)-C(92)$	1.805(4)
$\mathrm{P}(4)-\mathrm{C}(48)$	1.807(4)	$\mathbf{P}(4)-\mathbf{S}(4)$	2.015(2)	$\mathrm{P}(8)-\mathrm{C}(98)$	1.809(3)	$\mathbf{P}(8)-\mathbf{S}(8)$	2.014(2)
$\mathrm{S}(1)-\mathrm{Ni}(1)-\mathrm{S}(2)$	111.6(1)	$\mathrm{S}(1)-\mathrm{Ni}(1)-\mathrm{S}(3)$	108.8(1)	$\mathrm{S}(5)-\mathrm{Ni}(2)-\mathrm{S}(6)$	111.3(1)	$\mathrm{S}(5)-\mathrm{Ni}(2)-\mathrm{S}(7)$	104.8(1)
$\mathrm{S}(2)-\mathrm{Ni}(1)-\mathrm{S}(3)$	113.8(1)	$\mathrm{S}(1)-\mathrm{Ni}(1)-\mathrm{S}(4)$	103.2(1)	$\mathrm{S}(6)-\mathrm{Ni}(2)-\mathrm{S}(7)$	109.3(1)	$\mathrm{S}(5)-\mathrm{Ni}(2)-\mathrm{S}(8)$	110.0(1)
$\mathrm{S}(2)-\mathrm{Ni}(1)-\mathrm{S}(4)$	106.4(1)	$\mathrm{S}(3)-\mathrm{Ni}(1)-\mathrm{S}(4)$	112.4 (1)	$\mathbf{S}(6)-\mathrm{Ni}(2)-\mathrm{S}(8)$	109.6(1)	S(7)-Ni(2)-S(8)	$111.7(1)$
$\mathrm{Ni}(1)-\mathrm{S}(1)-\mathrm{P}(1)$	101.8(1)	$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	118.5(2)	$\mathrm{Ni}(2)-\mathrm{S}(5)-\mathrm{P}(5)$	101.1(1)	$\mathrm{S}(5)-\mathrm{P}(5)-\mathrm{N}(5)$	118.3(1)
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	107.3(1)	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	105.4(2)	S(5)-P(5)-C(56)	106.9(1)	$\mathrm{N}(5)-\mathrm{P}(5)-\mathrm{C}(56)$	105.6(2)
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	108.1(2)	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	110.7(2)	$\mathbf{S}(5)-P(5)-C(62)$	108.0(1)	$\mathrm{N}(5)-\mathrm{P}(5)-\mathrm{C}(62)$	111.1(2)
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(12)$	106.1(2)	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	130.0(3)	$\mathrm{C}(56)-\mathrm{P}(5)-\mathrm{C}(62)$	106.2(2)	$\mathrm{P}(5)-\mathrm{N}(5)-\mathrm{P}(6)$	129.9(2)
$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(1)$	119.2(1)	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	120.8(1)	$\mathrm{P}(5)-\mathrm{C}(56)-\mathrm{C}(51)$	119.6(1)	$\mathrm{P}(5)-\mathrm{C}(56)-\mathrm{C}(55)$	120.4(1)
$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(7)$	119.6(1)	$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	120.4(1)	$\mathrm{P}(5)-\mathrm{C}(62)-\mathrm{C}(57)$	119.8(1)	$\mathrm{P}(5)-\mathrm{C}(62)-\mathrm{C}(61)$	120.2(1)
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{C}(18)$	107.8(2)	$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{C}(24)$	108.5(2)	$\mathrm{N}(5)-\mathrm{P}(6)-\mathrm{C}(68)$	108.0(2)	$\mathrm{N}(5)-\mathrm{P}(6)-\mathrm{C}(74)$	108.5(2)
$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{C}(24)$	105.5(2)	$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{S}(2)$	117.3(2)	$\mathrm{C}(68)-\mathrm{P}(6)-\mathrm{C}(74)$	105.3(2)	$\mathrm{N}(5)-\mathrm{P}(6)-\mathrm{S}(6)$	117.8(2)
$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{S}(2)$	107.5(1)	$\mathrm{C}(24)-\mathrm{P}(2)-\mathrm{S}(2)$	109.5(1)	C(68)-P(6)-S(6)	106.4(1)	C(74)-P(6)-S(6)	110.2(1)
$\mathrm{P}(2)-\mathrm{C}(18)-\mathrm{C}(13)$	121.2(1)	$\mathrm{P}(2)-\mathrm{C}(18)-\mathrm{C}(17)$	118.5(1)	$\mathrm{P}(6)-\mathrm{C}(68)-\mathrm{C}(63)$	120.3(1)	$\mathrm{P}(6)-\mathrm{C}(68)-\mathrm{C}(67)$	119.5(1)
$\mathrm{P}(2)-\mathrm{C}(24)-\mathrm{C}(19)$	117.9(1)	$\mathrm{P}(2)-\mathrm{C}(24)-\mathrm{C}(23)$	122.0(1)	$\mathrm{P}(6)-\mathrm{C}(74)-\mathrm{C}(69)$	121.8(1)	$\mathrm{P}(6)-\mathrm{C}(74)-\mathrm{C}(73)$	118.1(1)
$\mathrm{Ni}(1)-\mathrm{S}(2)-\mathrm{P}(2)$	106.2(1)	$\mathrm{Ni}(1)-\mathrm{S}(3)-\mathrm{P}(3)$	101.0(1)	$\mathrm{Ni}(2)-\mathrm{S}(6)-\mathrm{P}(6)$	107.4(1)	$\mathrm{Ni}(2)-\mathrm{S}(7)-\mathrm{P}(7)$	102.0(1)
$\mathrm{S}(3)-\mathrm{P}(3)-\mathrm{N}(3)$	117.9(2)	$S(3)-P(3)-C(30)$	107.8(1)	$\mathrm{S}(7)-\mathrm{P}(7)-\mathrm{N}(7)$	$117.7(1)$	$\mathbf{S}(7)-P(7)-C(80)$	107.6(1)
$\mathrm{N}(3)-\mathrm{P}(3)-\mathrm{C}(30)$	111.2(2)	$S(3)-P(3)-C(36)$	109.0(1)	$\mathrm{N}(7)-\mathrm{P}(7)-\mathrm{C}(80)$	110.3(2)	$S(7)-P(7)-C(86)$	107.9(1)
$\mathrm{N}(3)-\mathrm{P}(3)-\mathrm{C}(36)$	105.2(2)	$\mathrm{C}(30)-\mathrm{P}(3)-\mathrm{C}(36)$	104.9(2)	$\mathrm{N}(7)-\mathrm{P}(7)-\mathrm{C}(86)$	105.6(2)	$\mathrm{C}(80)-\mathrm{P}(7)-\mathrm{C}(86)$	107.3(2)
$\mathrm{P}(3)-\mathrm{N}(3)-\mathrm{P}(4)$	130.6 (3)	$\mathrm{P}(3)-\mathrm{C}(30)-\mathrm{C}(25)$	$119.4(1)$	$\mathrm{P}(7)-\mathrm{N}(7)-\mathrm{P}(8)$	127.6(2)	$\mathrm{P}(7)-\mathrm{C}(80)-\mathrm{C}(75)$	120.0(1)
$\mathrm{P}(3)-\mathrm{C}(30)-\mathrm{C}(29)$	120.6(1)	$\mathrm{P}(3)-\mathrm{C}(36)-\mathrm{C}(31)$	117.9(1)	$\mathrm{P}(7)-\mathrm{C}(80)-\mathrm{C}(79)$	120.0(1)	$\mathrm{P}(7)-\mathrm{C}(86)-\mathrm{C}(81)$	119.6(1)
$\mathrm{P}(3)-\mathrm{C}(36)-\mathrm{C}(35)$	122.0(1)	$\mathrm{N}(3)-\mathrm{P}(4)-\mathrm{C}(42)$	109.3(2)	$\mathrm{P}(7)-\mathrm{C}(86)-\mathrm{C}(85)$	120.4(1)	$\mathrm{N}(7)-\mathrm{P}(8)-\mathrm{C}(92)$	110.3(2)
$\mathrm{N}(3)-\mathrm{P}(4)-\mathrm{C}(48)$	107.0(2)	$\mathrm{C}(42)-\mathrm{P}(4)-\mathrm{C}(48)$	107.9(2)	$\mathrm{N}(7)-\mathrm{P}(8)-\mathrm{C}(98)$	105.5(2)	$\mathrm{C}(92)-\mathrm{P}(8)-\mathrm{C}(98)$	104.6(2)
$\mathrm{N}(3)-\mathrm{P}(4)-\mathrm{S}(4)$	117.8(2)	C(42)-P(4)-S(4)	107.4(1)	$\mathrm{N}(7)-\mathrm{P}(8)-\mathrm{S}(8)$	117.3(2)	$\mathrm{C}(92)-\mathrm{P}(8)-\mathrm{S}(8)$	108.7(1)
$\mathrm{C}(48)-\mathrm{P}(4)-\mathrm{S}(4)$	107.1(1)	$\mathrm{P}(4)-\mathrm{C}(42)-\mathrm{C}(37)$	121.8(1)	$\mathrm{C}(98)-\mathrm{P}(8)-\mathrm{S}(8)$	109.6(1)	$\mathrm{P}(8)-\mathrm{C}(92)-\mathrm{C}(87)$	120.4(1)
$\mathrm{P}(4)-\mathrm{C}(42)-\mathrm{C}(41)$	118.1(1)	$\mathrm{P}(4)-\mathrm{C}(48)-\mathrm{C}(43)$	120.5(1)	$\mathrm{P}(8)-\mathrm{C}(92)-\mathrm{C}(91)$	$119.5(1)$	$\mathrm{P}(8)-\mathrm{C}(98)-\mathrm{C}(93)$	121.4(1)
$\mathrm{P}(4)-\mathrm{C}(48)-\mathrm{C}(47)$	119.5(1)	$\mathrm{Ni}(1)-\mathrm{S}(4)-\mathrm{P}(4)$	103.9(1)	$\mathrm{P}(8)-\mathrm{C}(98)-\mathrm{C}(97)$	118.5(1)	$\mathrm{Ni}(2)-\mathrm{S}(8)-\mathrm{P}(8)$	100.3(1)

$\left[\mathrm{Pb}\left\{\mathrm{N}\left(\mathbf{S P P h}_{2}\right)_{2}-S, S^{\prime}\right\}_{2}\right]$. Further studies into substituent effects on the geometries of $\mathrm{M}\left[\mathrm{N}\left(\mathrm{XPPh}_{2}\right)_{2}\right]$ rings are in progress.

Acknowledgements

We are grateful to the SERC and Exxon Chemicals for financial support and to Johnson Matthey ple for the loan of precious metals. J. N. is grateful to the Wellcome Foundation for support.

References

1 See, for example, M. Katoh, K. Miki, Y. Kai, N. Tanaka and N. Kasai, Bull. Chem. Soc. Jpn., 1981, 54, 611.

2 (a) I. Haiduc, C. Silvestru, H. W. Roesky, H.-G. Schmidt and M. Noltemeyer, Polyhedron, 1993, 12, 69; J. S. Casa, A. Castineiras, I. Haiduc, A. Sanchez, J. Sordo and E. M. Vazquez-Lopez, Polyhedron, 1994, 13, 2873 and refs. therein. (b) R. O. Day, R. R. Holmes, A. Schmidpeter, K. Stoll and L. Howe, Chem. Ber., 1991, 124, 2443.

3 R. Rossi, A. Marchi, L. Marvelli, L. Magon, M. Peruzzini, U. Casellato and R. Graziani, J. Chem. Soc., Dalton Trans., 1993, 723.

4 R. Rossi, A. Marchi, L. Marvelli, M. Peruzzini, U. Casellato and R. Graziani, J. Chem. Soc., Dalton Trans., 1992, 435.

5 F. T. Wang, J. Najdzionek, K. L. Leneker, H. Wasserman and D. M. Braitsch, Synth. React. Inorg. Met.-Org. Chem., 1978, 8, 119.

6 I. Haiduc, in Inorganic Experiments, ed. J. D. Woollins, VCH, Weinheim, 1994.
7 G. M. Sheldrick, SHELXTL PLUS, Version 4.2, Siemens Analytical Instruments Inc., Madison, WI, 1990.
8 H. Noth, Z. Naturforsch., Teil B, 1982, 37, 1491; S. Husebye and K. Maartman-Moe, Acta Chem. Scand. Ser. A, 1983, 37, 439; P. B. Hitchcock, J. F. Nixon, I. Silaghi-Dimitrescu and I. Haiduc, Inorg. Chim. Acta, 1985, 96, 77.
9 S. W. Hall, M. J. Pilkington, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Polyhedron, 1991, 10, 261.

10 See, for example, Non Metal Rings Cages and Clusters, ed. J. D. Woollins, Wiley, Chichester, 1988 and refs. therein.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

[^1]: * The analogous platinum-sulfur compound, 3 is isomorphous with 1 and $2[a=9.550(6), b=12.256(16), c=13.017(12) \AA, \alpha=110.70(8)$, $\left.\beta=96.69(6), \gamma=99.93(8)^{\circ}, U=1378 \AA^{3}\right]$ but crystals suitable for a full structure analysis could not be obtained.

